
Application Explorations for Future Interconnects

R.F. Barrett, C.T. Vaughan, and S.D. Hammond
Sandia National Laboratories

Albuquerque, NM, USA
{rfbarre,ctvaugh,sdhammo}@sandia.gov

D. Roweth
Cray, Inc.

Reading, UK
droweth@cray.com

Abstract—For over two decades the dominant means
for enabling portable performance of computational sci-
ence and engineering applications on parallel processing
architectures has been the bulk-synchronous parallel pro-
gramming model. Code developers, motivated by perfor-
mance considerations to minimize the number of messages
transmitted, have typically strived to increase the size of
each message through aggregation strategies. Emerging
and future architectures, especially those seen as targeting
Exascale capabilities, provide motivation and capabilities
for revisiting this approach. In this paper we explore
alternative configurations within the context of a large-
scale complex multi-physics application and a proxy that
represents its behavior, presenting results that demonstrate
some important advantages as the number of processors
increases in scale.

Index Terms—High performance computing; parallel
architectures; computational science and engineering.

I. INTRODUCTION

For more than two decades, the bulk-synchronous
parallel programming model (BSP) [22] has been
the dominant theoretical computational model for
the implementation of large scale, high-performance
computation science and engineering (CSE) appli-
cations. This has been aided in part by the stan-
dardization of the Message-Passing interface (MPI)
which has provided a stable, portable and a largely
performant runtime environment for applications
written to the BSP paradigm.

As widely available parallel processing architec-
tures have evolved to focus on increasing inter-
connect bandwidth (relative to latency), application
developers have optimized their code to “bulk up”
inter-process communication – essentially choosing
to aggregate data from various structures into fewer,
single, larger messages [5]. Although many appli-
cations have continued to perform well up to peta-
scale [2], [8] using a bulk-message approach, for a

variety of reasons, including hardware design limi-
tations, increasing interconnect power consumption
and changes in software design, this situation is
expected to change in future machines [1], [21].

Our work is motivated and driven by our ex-
perience in running large-scale applications serv-
ing mission critical functions across a breath of
agencies including the United States Departments
of Energy and Defense. These experiences include
empirical characteristics observed in running many
applications at full machine scale where artifacts
such as messaging rate and interconnect bandwidth
can create significantly different behaviors than seen
at smaller runs [23]. The contribution of the work
described in this paper is to highlight the need to
revisit traditional application configuration strate-
gies. Specifically, we illustrate the benefits of careful
attention to logical-to-physical mappings of parallel
processes as a function of network topologies, and
then demonstrate the effectiveness of a message
passing strategy that greatly reduces the need for
message aggregation. We note that the outcomes
presented are at odds with the conventional ap-
proaches to communication optimization performed
over the past two decades but are in some sense
a sentinel for the strategies to come as machine
architectures are developed for Exascale-class com-
puting.

This paper is organized as follows. After a brief
discussion of the BSP model and related work,
we describe the platforms and methodology for
our experiments. Next we describe the experiments,
progressing from the current implementation of a
representative well-known CSE application through
some reconfigurations using a proxy application that
enables rapid exploration of alternative configura-
tions. We conclude with a summary of our findings



and a discussion of future work.

A. The Bulk Synchronous Parallel (BSP) Model

The BSP programming model is the predominant
“bridging model” in parallel computing for science
and engineering applications. It makes a clear dis-
tinction between computation and communication,
providing a clear distinction between hardware and
software. This approach has enabled continued and
improving performance of parallel applications in
spite of the rapid evolution of architectures and
enabling technologies.

By message aggregation we mean the gathering
of data from different computational regions, from
(potentially) non-contiguous memory locations, into
a single user-managed message buffer. The receiv-
ing process must then scatter the data out into
(again, potentially) non-contiguous data locations,
typically before computation can again proceed.
This reduces the number of inter-process communi-
cation steps, exploiting the node interconnect band-
width capabilities, while simultaneously avoiding
message latencies. We abbreviate this BSP supple-
mented with message aggregation as BSPMA.

The BSPMA model incurs or exacerbates four
costs, none of which advances the computation: con-
sumption of memory (the message buffers), on-node
bandwidth (copying into and out of the buffers),
synchronization (once the data is transferred), and
interference with caching of the computation (and
potentially data transfer information). Further, from
an application development viewpoint, it interferes
with the natural mapping of algorithms to program-
ming languages. BSPMA also typically induces
intermediate data buffering requirements, subverting
the node interconnect capabilities designed specif-
ically to reduce the communication costs, inhibits
asynchronous movement of data, and interferes with
the networks’ ability to interleave data across the
topology.

B. Related Work

For a breadth of CSE application programs, inter-
process communication is captured within higher
level interfaces [5]. Our focus herein is on the inter-
process communication strategies that we expect
to be effective on future architectures. Toward that
end, the capabilities of the Cray XE6 are seen to

be representative of the sorts of architectural capa-
bilities that might be exploited while minimizing
the impact to the huge investment in application
codes. Hagar, Jost, and Rabenseifner [12] illustrate
the effects of process topologies on the performance
of the NAS Parallel Benchmarks [4] configured for
OpenMP MPI hybrid on clusters of multi-core SMP
nodes. Both of these studies were based on the
Cray XT4 and XT5, and an IBM Power5 from
Bull. Yu, Chung, and Moreira performed related
studies on the BlueGene L architecture [24]. Hoefler
et al [15] describe the new topology interface in
MPI 2.2, which could provide a portable interface
for the processor mapping we found effective.

II. EXPERIMENTAL PLATFORMS

In this study, we employed three high performance
computing platforms that span a set of processors,
interconnects, and interconnect topologies of inter-
est to the NNSA/ASC program and wider HPC
community: Cielo, a Cray XE6, a ASC capabil-
ity platform; Chama, an Intel/Infiniband capacity
cluster, and Cascade, a Cray XC. We selected
these machines for their diversity of some important
characteristics yet with similarity in other areas
that allow for some important interpretations. A
summary of some important specifications is shown
in Table I.

Before providing additional detail on these plat-
forms, we begin with some terminology. Message
injection rate is the ability of a node to place
messages onto the network interconnect card (NIC).
Injection bandwidth measures the ability of the NIC
to put data onto the interconnect. Global bandwidth
measures the ability of the interconnect to move data
between multiple nodes.

Cielo, an instantiation of a Cray XE6, is com-
posed of AMD Opteron Magny-Cours oct-core pro-
cessors, connected using a Cray custom interconnect
named Gemini, and a light-weight kernel operating
system called Compute Node Linux (CNL). The
system consists of 8,944 dual socket compute nodes,
for a total of 143,104 cores. Each processor is di-
vided into two four processor core memory regions,
called NUMA nodes (illustrated in Figure 1(a)),
connected using HyperTransport version 3.

Nodes are connected using Cray’s Gemini 3-D
torus interconnect. A Gemini ASIC supports two



Platform Cielo Chama Piz Daint
Processor AMD Opteron Magny-Cours Intel Xeon Sandy Bridge Intel Xeon Sandy Bridge
Nodes 8,518 1,232 2,256
Sockets/node 2 2 2
Cores/socket 8 8 8
Total number of cores 136,288 19,712 36,096
Clock speed (GHz) 2.4 2.6 2.6
Memory per node (GB) 32 32 32
Memory DDR4 1333 MHz DDR3 1600 MHz DDR3 1600 MHz
Socket Connection HyperTransport PCIe Gen2 / QPI PCIe Gen3
Interconnect Gemini 3D-torus Qlogic QDR Fat tree Cray Aries, Dragonfly

TABLE I
KEY ARCHITECTURE PARAMETERS
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Fig. 1. Node Architectures

compute nodes. The X and Z dimensions use twice
as many links as the Y dimension (24 bits and
12 bits respectively) and therefore introduce an
asymmetry to the nodes in terms of bandwidth
in the torus. This needs to be taken into account
when configuring a system in order to balance the
bisection bandwidth of each dimensional slice in the
torus. Cielo is configured as a 16×12×24 3-D torus.
Injection bandwidth is limited by the speed of the
Opteron to Gemini HyperTransport link, which runs
at 4.4 GT/s. Links in the X and Z dimensions have
a peak bi-directional bandwidth of 18.75 GB/s, and
the Y dimension peaks at 9.375 GB/s.

Chama, constructed by Appro, Inc., is designed
for production capacity computing by the NNSA
ASC Trilabs. The system consists of 1,232 com-
pute nodes, connected by a QLogic Infiniband fat
tree, using 12000 series switches and 7300 series
adapters. Each node is composed of two oct-core
Intel Xeon E5-2670 Sandy Bridge processors, illus-
trated in Figure 1(b), for a total of 19,712 cores,
running a RHEL operating system.

Piz Daint, a Cray XC Cascade system, is com-
posed of Intel Xeon Sandy Bridge oct-core proces-
sors, connected using a Cray Aries custom intercon-
nect [3] named Dragonfly [18]. The system consists
of 2,256 dual socket compute nodes, for a total of
36,096 cores.

III. A REPRESENTATIVE APPLICATION

CTH, used throughout the United States DOE com-
plex, and within the US Department of Defense’s
(DoD) High Performance Computing Moderniza-
tion Program (HPCMP) [9], is a multi-material,



Fig. 2. CTH shaped charge simulation: time progresses left to right.

large deformation, strong shock wave, solid me-
chanics code developed by Sandia National Lab-
oratories [14]. The code solves the Lagrangian
equations using second-order accurate numerical
methods and mesh remap to reduce dispersion and
dissipation including models for multi-phase, elastic
viscoplastic, porous and explosive materials.

Studies involving several distinct problem sets
show that their behavior, in terms of the boundary
exchange, is consistent [16], allowing us to focus
on one common configuration. The “shaped charge”
problem [11], in three dimensions on a rectangular
mesh, is illustrated in Figure 2.

The domain is divided into three dimensional
regions which are mapped to parallel processes.
Each MPI rank can have a maximum of six commu-
nication neighbors; for these problems that number
is reached (for some ranks) once 128 ranks are
employed. Boundary data (two dimensional “faces”)
is exchanged 19 times each time step. For the
shaped charge problem set, each exchange aggre-
gates data from 40 arrays, representing 40 variables,
resulting in an average message size of 4.1 MBytes,
illustrated in Figure 3(a).

Collective communication, called 90 times
each time step, is typically a reduction
(MPI_Allreduce) of small counts. Computation
is characterized by regular memory accesses, is
fairly cache friendly, with operations focusing on
two dimensional planes.

IV. EXPERIMENTS

We begin with a study demonstrating the importance
of mapping MPI ranks to the physical topology
of the interconnect. Once effectively addressed, we
explore an alternative communication strategy, de-
signed for our exascale explorations.

A. Mapping processes to processors
CTH has performed well in a variety of computing
environments over a long period of time [17], [19],

(a) BSPMA

(b) SVAF

Fig. 3. MiniGhost halo exchange strategies

[20]. However, a recent study involving high pro-
cessor counts revealed significant scaling degrada-
tion in the nearest neighbor communication strategy
employed in CTH [16]. The performance of a
miniapp, called miniGhost [7] from the Mantevo
project [13], configured to represent the communi-
cation requirements of CTH [6], began degrading
at 4,096 processors, and was out of control by
131,072 processors (illustrated in Figure 4(a)). Note
that the MPI reduction operations (typically global
summation of a double precision scalar) scale well
regardless of the process mapping, one indication of
a quality MPI implementation.

The tractable nature of miniGhost enabled us to
trace the problem to the communication in the z
direction, illustrated in Figure 4(b). The problem
was caused by the manner in which logical pro-
cesses, organized as a logical three dimensional grid
by CTH, were assigned to physical processors and
mapped onto the torus. The combination of very
large process counts and very large messages led to
increasing contention. (We see similar behavior with
the OpenMP+MPI implementation, where fewer but
even larger messages are transmitted.)
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The number of hops (referred to as the Manhattan
distance) required to communicate with x and y
neighbors stays small as the number of processes
increases, but the number in the z direction starts to
grow rapidly after 2048 processes. Neighbors in the
x direction required a maximum of one hop and in
the y direction a maximum of two hops. This com-
bined with the very large messages of a typical CTH
problem set (e.g. for the “shaped charge” problem,
40 three dimensional state variable arrays generated
message lengths of more than 5 MBytes) resulted in
poor scaling beginning at 8,192 processes, a trend
that accelerated after 16,384 processes.

In response, we implemented a means by which
the parallel processes could be logically re-ordered
to take advantage of the physical locality induced
by the communication requirements. In the nor-
mal mode, CTH (and miniGhost) assigns blocks
of the mesh to cores in a manner which ignores
the connectivity of the cores in a node. On Cielo,
as with other Cray X-series architectures, cores
are numbered consecutively on a node, and this
numbering continues on the next node. Blocks of the
mesh are assigned to cores by traversing the blocks
of the mesh in the x direction of the mesh starting
at one corner of the mesh. Once those blocks are
assigned, the next block assigned is the block one
over in the y direction of the mesh from the first
block assigned. The mesh is again then traversed
in the x direction and blocks are assigned to cores.
This process is continued until there are no more
blocks in the y direction. The next block assigned
is then the first block in the z direction from the

(a) Original mapping (b) Re-ordered mapping

Fig. 5. CTH logical processor mapping on Cielo

first block assigned. The blocks of the mesh with
this z value are then assigned as the first blocks
were assigned. This process is then repeated until
all blocks in the mesh have been assigned to cores
in the machine.

For example, the original approach logically maps
128 parallel processes onto a 4 × 8 × 4 grid of
processes, illustrated in Figure 5(a).

The result is that the communication partners in
the x direction are 1 away from the diagonal, those
4 away are the y neighbors, and those 32 away are
the z neighbors. Our re-ordering algorithm assigns
blocks of the mesh to the processor cores of the
machine by groups. Illustrated in Figure 5(b), the
re-ordered problem maps 2 × 2 × 4 blocks to each
node. Here the communication partners that are 1
or 15 away are the x neighbors, those 2 or 30
away are the y neighbors, and those 30 away are
the z neighbors. Since there are only four processor



Number of Original Order Re-ordered
MPI ranks X Y Z X Y Z

16 0.0 0.0 0.0 0.0 0.0 0.0
32 0.0 0.0 0.0 0.0 0.0 0.0
64 0.0 0.0 0.3 0.0 0.3 0.0

128 0.0 0.0 1.0 0.0 0.5 0.0
256 0.0 0.0 1.0 0.0 0.5 0.3
512 0.0 0.1 2.0 0.0 0.6 0.4
1024 0.0 0.3 2.1 0.2 1.0 0.7
2048 0.0 0.3 2.7 0.3 1.2 1.2
4096 0.0 0.3 3.7 0.3 1.2 1.2
8192 0.0 0.5 5.1 0.2 1.1 2.0

16384 0.0 0.5 4.9 0.2 1.1 2.2
32768 0.0 0.5 5.6 0.2 1.1 2.5
65536 0.0 1.1 10.2 0.2 1.6 2.8
131072 0.0 1.1 10.1 0.2 1.6 3.1

TABLE II
MINIGHOST AVERAGE HOP COUNTS ON CIELO

cores in the z direction and four processor cores in
the z direction of the block on each node, there is
only one z diagonal. In the case where there are
more than four processor cores in the problem in
the z direction, there would be another diagonal for
z neighbors. The result is a slight increase in the
average hop counts in the x and y directions, but a
significant decrease in the average hop count in the z
direction, as seen in Table II. The impact on scaling
performance is evident in Figure 4. Communication
time in the z direction is dramatically reduced, with
only a slight increase in the x and y directions. The
technique was applied to CTH, significantly improv-
ing its scaling characteristics as well. The remaining
scaling issue is a function of synchronization costs,
an issue to be more closely examined as we gain
access to higher scales on Cascade systems.

Consider the largest CTH problem set run:
131, 072 processes, configured as a 32 × 64 × 64
logical grid, each with a local domain of 160 ×
96× 80, for a global domain of dimension 5120×
6144×5120. Over the course of execution, 770, 048
messages are transmitted, of size 2.57 Mbytes, 4.25
Mbytes, and 5.08 Mbytes in the x, y, and z di-
rections, respectively, for a total volume of 3.06
TeraBytes of data. Table III shows the percentage
of messages sent off-node, in each direction, for the
original and re-ordered process execution.

At the expense of a 16-times increase in the
number of off-node message in the x direction,
traveling a short distance, the number and distance

% off-node
Original Re-ordered

x direction 3.23 48.39
y direction 100 49.21
z direction 100 23.81

Total 68.09 40.43

TABLE III
CTH OFF-NODE MESSAGE TRAFFIC ON CIELO
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Fig. 6. CTH and miniGhost performance on on Chama

of off-node messages in the farther y and even
farther z directions are reduced by more a factor of
two and four, respectively. The number of stalls seen
between the nodes and the NIC correlates with the
hop count, indicating contention, but further analy-
sis is ongoing in order to make stronger conclusions.

Similar experiments were performed on Chama,
shown in Figure 6.

Again we see the benefit of the re-ordering
scheme, as informed by miniGhost. What is not
yet clear is the behavior that would be seen for
significantly higher processor counts. However, the
trends suggest that this approach is also viable for
this architecture.

Export control restrictions on CTH preclude exe-
cution on Daint, but we are confident that miniGhost
is sufficiently representative of CTH, as seen below.

B. Single variable boundary exchange

The BSPMA strategy adheres to an effective means
for managing data movement. However, intercon-
nect architects are telling us that exascale goals,
especially with regard to power consumption, are
causing significant changes in interconnects capa-
bilities. In particular, injection rate and injection
bandwidth are increasing proportionally more than
global bandwidth. These changes are hinted at by



Cielo, providing an early opportunity to explore
alternative strategies.

We configured miniGhost so that boundaries are
exchanged as soon as computation on a variable is
completed. Illustrated in Figure 3(b), we refer to this
as “single variable aggregated faces” (SVAF). This
means that, for the shaped charge problem, (up to)
six messages, one to each neighbor, are transmitted
for each variable update each time step.

This results in 39 more messages for each bound-
ary exchange, each of which is 1/40 the size of
the BSPMA messages. The expectation was that
this would result in a significant degradation of
overall performance on current architectures, but
might hint at improvements on higher scales on
future systems. Instead, as illustrated by the graph in
Figure 7(a), the process re-ordered SVAF approach
out-performed process re-ordered BSPMA.

Chama performance is shown in Figure 7(b).
First, we note some apparent anomalies, which we
attribute to system noise in spite of the dedicated
environment. Further, the SVAF strategy is again
more effective than BSPMA (excepting what ap-
pears to be an anomaly at 8,192 cores). Piz Daint
results, illustrated in Figure 7(c), again show SVAF
outperforming BSPMA, and perhaps hinting at bet-
ter scaling with increasing core counts. Effective
process mapping was used for each of the results
shown. The Aries CE (“collective engine”) provides
special support for reduction and barrier operations,
here demonstrated to provide a critical service.

V. SUMMARY

Expected architecture changes, driven by energy
consumption and other constraints, compelled us to
revisit some traditional and well-accepted strategies
for sharing inter-process boundary data in PDE-
based application programs. Herein we demon-
strated an alternative to the ubiquitous BSPMA.
Designed to exploit the capabilities of expected
future architectures, the SVAF method provides a
more natural coding style (data is sent as soon as it
changes, maintaining stronger data coherence across
the parallel processes), better use of available mem-
ory and bandwidth, and better scaling characteristics
at high processor counts. Adding this strategy to
CTH will require significant modification, so it is
thus far untested in a full application. However,
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miniGhost has been demonstrated to represent CTH
boundary exchange characteristics [6]. Its also worth
noting that programming convenience has led some
application developers (including those for CTH)
to include the halo data for each variable in each
exchange, often data is included that has not been
modified. The SVAF strategy would eliminate this
unnecessary data movement as the exchange is
directly associated with the computation.

We also continue to see that in spite of improved
interconnect technologies, process placement based
on specific communication patterns is essential to
exploiting the capabilities of the architecture. Simi-
lar experiments on different architectures, including
a 6-core based XE6 (Hopper at NERSC) as well



as the host-device configuration of the Cray XK6,
also show benefits of this work, to be presented in
future publications. Experiments using OpenMP for
on-node computation reduces the overall message
traffic, but the resulting messages are larger and thus
also cause contention that adversely impacts scaling
performance.

Future work includes a miniGhost implementa-
tion designed to hide communication costs through
explicit computational overlap strategies, using MPI
functionality as well as Fortran co-arrays. More
complex computations are being incorporated to
represent a broader set of codes, including those
based on AMR. Our work is also informing the
development of a more general process mapping ca-
pability [10], useful to a broader set of applications.
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